

Acknowledgements

This study was a collaborative effort by CBT and Perkins&Will to synthesize stakeholder concerns, and analyze the environmental and climate change impacts along the diverse riverfront edge conditions. The process involved stakeholder input from a diverse group of advocacy, neighborhood and community groups. Charles River Conservancy, Charles River Watershed Association, Conservation Law Foundation, and A Better City provided critical input, data and support in developing a series of strategies that outlines a regenerative approach to creating a resilient riverfront.

We thank our stakeholders for their valuable input, advocacy and support.

- Allston Civic Association
- Boston Cyclists Union
- Boston Society for Architecture
- Charles River Conservancy
- Conservation Law Foundation

- A Better City
- Livable Streets
- MassBike
- Walk Boston
- Weston & Sampson

- Allston Brighton Community Development Corporation
- Allston Village Main Streets
- Boston Society of Landscape Architects
- Charles River Watershed Association
- 495/MetroWest Corridor Partnership

Building on years of great advocacy...

BSA Beacon Yards Charette | Sep 2014

A Better City At-Grade | Dec 2014 (see attached), renderings by NBBJ (early 2018)

Beacon Yards: DeNovo Urbanism | Dec 2014 By Northeastern School of Architecture / Tim Love

Elevated Grand Junction by Ari Ofsevit | Jul 2015

I90 Allston Placemaking Study | Dec 2015 - Oct 2016 By The Cecil Group/Harriman with Nelson Nygaard and Stantec (funded by MassDOT with oversight by MassDOT/Harvard/BPDA)

River Remarkable Work Group | starting in 2016 John Shields, Skip Burck, Frank M. Costantino, etc

Unchoke the Throat design | Feb 2018 work by Sasaki for WalkBoston and Charles River Conservancy

BSA Allston Esplanade charette | Apr 2019

Riverfront Analysis + Design Exploration | Sep 2020 By CBT / Perkins + Will

Goals

Establish a cohesive, pragmatic and variable strategy that responds to challenge along the length of the corridor

Effectively connect PDW to the urban system and neighborhoods BU Bridge/Aggannis/ Grand Junction/ Cambridge - N/Harvard Street

Balance the transportation needs with multiple variables including pedestrian, bicycles, river users, ecology and aquatic life

Baseline for this study

MassDOT Option

All At-grade Option

The Concern

Existing Conditions

Disconnected from the cityBike and ped cannot connect back to the city through BU Bridge

Multi-model Transportation

BU Bridge, Grand Junction and the PDW path stack up each other

PDW Path Adjacent to SFRNarrow path (no separation of peds and cyclists) with inadequate buffer from the road

There are scattered lookout where people can stop

Hard Edge Close to Western AveRiver edge becomes quay walls as it gets closer to Western Ave

Nature of Opportunity

Complete the challenging link along Charles River

Restore the Rivers's Edge Ecology

Nature of Opportunity

Connect to the City

Build 21st Century Infrastructure

Transportation and Ecology can co-exist

Restoring River's Edge Ecology

Analysis

- Evaluate existing natural systems
- Challenges of existing infrastructure systems
- Impacts of climate change
- Diverse edge conditions

Strategies

- Tool kit of natural strategies
- Case studies

Exploration

- Framework of guiding principles
- Propose natural strategies for diverse edge conditions
- Framework for connectivity
- Establish ecosystems that promote biodiversity and enhance ecology

Plans

- Understand environmental issues and evaluate existing natural systems
- Challenges and opportunities to enhance ecology and establish aquatic habitat
- Understand the limitations and challenges of existing infrastructure
- Evaluate the impact of climate change
- Analyze the diverse edge conditions and experential qualities

Bathymetry

Challenges + Opportunities

- Identify shallow areas in the river bed to establish aquatic habitats
- Understand natural topography and drainage patterns
- Identify areas with steep slopes that casuse erosion and sedimentation in the river bed

Isobaths (f)

Topography

Challenges + Opportunities

- Identify ideal locations to propose BMPS to mitigate stormwater and flooding issues
- The low-lying areas of Allston Landing and the Enterprise Research Campus are vulnerable to flooding
- Identify areas that are vulnerable to flooding and projected flod elevations

Elevation (f)

Infrastructure

Challenges + Opportunities

- Improve overall water quality to support aquatic habitat & biodiversity
- Collect and treat discharge from CSO and remove pollutants prior to entering the Charles River
- Introduce BMPS to treat stormwater runoff from roadways and reduce pollution discharge into the river

Key

- BWSC Outfalls
- CSO Outfalls
- DCR Outfalls
- Monitoring Station
- Sub-watersheds
- Underground Culverts
 - Pollution + Sediment

1% Annual Flooding

Challenges + Opportunities

- Limited storage capacity to capture and treat 1"-5" storm events
- Inland flood issues anticipated due to climate change impacts
- Address the impacts of climate change and make the river resilient by increasing flood storage along riverbanks

2070 0.1% Inundation Depth

Ecology & Habitat

Challenges + Opportunities

- Limited width for trees and shrubs that prevent erosion along steep slopes
- Invasive and nuisance species such as Japanese knotweed that do not enable biodiversity
- Historically important fish habitat has been drastically reduced
- Richness of species is constrained by compacted, barren soils
- Promote a stable tree canopy to provide shade and mitigate the heat island effect

Key

Developed Open Space

Tree Cover

Shrub Cover

Surface Temperature

Challenges + Opportunities

- Roadways immediately adjacent to river intensify the heat island effect
- Additional pavement, hardscape, and buildings developed for Allston Landing will exacerbate temperatures
- Higher river temperatures can stress the ecosystem, resulting in toxic algal blooms and fish die-off

Modeled Air Temperature (F)

July / August 2019

Edge Conditions

Challenges + Opportunities

- Significant erosion issues along rip rap edge, mixed in with asphalt pavement
- Steep riverbanks & lack of plants with strong roots increase erosion issues
- Limited width to incorporate multimodal pathways and stormwater treatment strategies
- High volumes of untreated pollution discharge directly into the river bed

Key

- Granite Retaining Wall
- Eroded Naturalized Edge
- Road Immediately Adjacent
- BSWC Outfalls

Section A

Section B

Opportunities for pretreatment and floor storage for resiliency

AO*

EDGE OF ROADWAY FOR MASSDOT OPTION

EDGE OF ROADWAY FOR MASSDOT OPTION

22' 22' 6' 22'

CHARLES RIVER

BUFFER

SOLDIERS FIELD ROAD

Section C

Section E

Lack of armored edge to prevent erosion and stabilize slope

CSO/BSWC OUTFALL

CSO/B

Section F

Section G

SECTION H

Plan

Strategies

Tool Kit

- Create a toolkit of landscape strategies to create a living shoreline
- Understand the comparative benefits and impacts of each intervention
- Draw upon knowledge gained from preexisting examples and precedents

Tool Kit

Naturalized Edges

Tool Kit

Constructed Edges

Exploration

Sections

- Propose a series of landscape systems that mitigate the impacts of pollution discharge and improve environmental conditions
- Address the impacts of climate change to create a resilient riverfront
- Re-imagine the river's edge as a natural living shoreline of rich and diverse ecosystems
- Introduce robust circulation systems and open spaces connecting surrounding communities to the riverfront

Section A

EDGE OF ROADWAY FOR MASSDOT OPTION

SOLDIERS FIELD ROAD

Strategies

Living Shoreline

Section F

Cantilevered Boardwalk

Section G

Section H

Stabilized Shoreline

Exploration

Section I

Connectivity Framework

Framework

BU Bridge Open Space

Throat Condition | Alternative 1A

Throat Condition | Alternative 1A

Throat Condition | Alternative 1B

Throat Condition | Alternative 2

Throat Condition | Alternative 2

Throat Condition | Alternative 2

Agganis Connection

Next Steps

- Transparency in process: put all the variables, constraints, details on the table
- Trans-disciplinary approach: Instead of a siloed approach, holistic approach of a systems approach for a shared benefit
- Ownership: Amongst all stakeholders, City agencies have the opportunity to champion and create a unifying platform
- **Advocacy and Funding:** Allocating a committee and funds to support stakeholder groups to participate in the planning process